Holistic Prosodic Examination of Mandarin Wh-indeterminates

Hongchen Wu¹, Jiwon Yun²

¹Georgia Institute of Technology (USA), ²Stony Brook University (USA)

[Introduction] Mandarin Chinese *wh*-words are indeterminates in that they are ambiguous between *wh*-question readings and *wh*-indefinite readings, and this ambiguity can be resolved prosodically (Hu 2002, Dong 2009, Liu et al. 2016, Yang 2018, Hsu and Xu 2020, Wang and Wang 2020, Wu and Yun 2023). However, existing studies report divergent findings on the prosodic features of *wh*-indeterminates, with the only consensus pointing to the pitch prominence of the *wh*-region for *wh*-question readings (Table 1). Potential shortcomings in experimental design in the previous studies include i) the unbalanced positioning of *wh*-words within sentences, ii) the use of non-identical strings for interrogative and indefinite readings, and iii) oversight of sentential prosody beyond the *wh*-word itself. In this study, we balanced the position of *wh*-words (both as subjects and objects) and utilized identical strings, aiming at a comprehensive examination of various prosodic features (pitch, intensity, duration) of *wh*-indeterminates as well as the global prosodic characteristics of sentences containing them.

[Experiment 1] We created 12 pairs of sentences, aligning subject and object *wh*-words in a mirror image fashion (1). The type (e.g., *which student* vs. *who*) and the animacy (e.g., *what* vs. *who*) of the *wh*-word were varied across the stimuli. Participants (N=34) were instructed to say aloud each target sentence with two different readings of the *wh*-word. They were given the option to refrain from recording the sentence if they thought the intended reading was not available. For 31 participants who accepted the ambiguity of *wh*-intermediates, we compared the prosodic properties of indefinite and interrogative readings, using a mixed linear regression model. In the *wh*-region, we found a longer duration for *wh*-question readings (p < .05, Figure 1), consistent with Yang (2018), Hsu and Xu (2020), Wu and Yun (2023), as well as a greater intensity for *wh*-question readings (p < .001) (Figure 2) as in Hsu and Xu (2020). However, no significant difference in pitch was observed in the *wh*-region, contrary to the consensus in previous studies. Outside the *wh*-region, we noted a lower pitch in the pre-*wh* region (p < .05, Figure 3) and a greater intensity in the post-*wh* region (p < .05, Figure 4) for *wh*-question readings: These novel findings suggest that global prosodic features are also employed for prosodic disambiguation beyond the local prosody of the *wh*-word itself.

[Experiment 2] The absence of a pitch effect in the *wh*-region in Experiment 1 is surprising, given the common findings on *wh*-pitch prominence in prior studies. To investigate whether this was partly influenced by the subject *wh*-word being in sentence-initial position, where intonational prominence at the beginning of the sentence might have overridden the anticipated pitch effect, we created 18 pairs of sentences based on (1a) and varied the presence and length of adverbial phrases before the subject *wh*-words (2). Analysis of production results from the same speakers confirmed the lack of a pitch effect in the *wh*-region. Overall, Experiment 2 exhibited a pattern closely resembling that of Experiment 1 (Figures 5, 6, 8) in the *wh*-region and post-*wh* region, with the only divergence being the extended duration observed in the post-*wh* region in Experiment 2, possibly due to the peripheral role of the sentence-initial adverb in shaping the overall meaning of the sentence.

[Conclusion] The results call for a holistic approach to the prosodic disambiguation of *wh*-indeterminates, i.e., both the local prominence of *wh*-question readings and the broader sentential prosody work together. Notably, our findings suggest that achieving pitch prominence of *wh*-words in interrogative readings is not strictly confined to local prosody. Instead, global prosodic factors, such as pitch compression in the pre-*wh* region (when the *wh*-word is in the object position), can play a significant role in attaining relative pitch prominence of *wh*-words.

	•		0 0				0
	Hu 2002	Dong 2009	Liu et al. 2016	Yang 2018	Hsu and Xu 2020	Wang and Wang 2020	Wu and Yun 2023
Stimuli	Only some were	Non-identical	Identical strings	Identical strings	Non-identical	Non-identical	Identical
5 tilliun	identical strings	strings	ioonaroa sumgo	i denneda su ings	strings	strings	strings
Readings	wh-questions,	wh-questions,	wh-questions,	wh-questions,	wh-questions,	wh-questions,	wh-questions,
0	yes/no-questions,	statements	statements	statements	yes/no-questions,	statements	statements
	echo questions				statements		
Position	Sentence-	Sentence-	Sentence-	Sentence-internal	Sentence-internal	Sentence-	Sentence-
of wh	boundaries	boundaries	boundary (object)	(direct object)	(object)	boundaries	internal
	(subject, object),	(subject, object),				(subject,	(subject)
	sentence-internal	embedded subject				object)	
Speakers	4	4	8	40	20	8	10
Pre-wh	Info not clearly	Info not clearly	No prosodic	Shorter duration	Info not clearly	Info not clearly	Longer
region	provided	provided	differences		provided	provided	duration
Wh-	Pitch prominence	Pitch prominence	Pitch prominence	Pitch prominence,	Pitch prominence,	Pitch	Pitch
region		for subject-wh,		longer duration,	longer duration,	prominence	prominence,
		but not always for		greater intensity	higher intensity		longer
		object-wh		range			duration
Post-wh	Info not clearly	Info not clearly	Info not clearly	F0 range	longer duration,	Info not clearly	F0 range
region	provided	provided	provided	compression	higher intensity	provided	compression
Notes	No statistical	No statistical	Local and global	Pitch is not the	Sentence-final	Subject and	Findings align
	report for high	report	prosodic features	only factor that	particles were	object wh-	with previous
	speaker variance		both play a role in	differs in the two	found to influence	words show	studies on
	No consistent		disambiguation,	readings	focus prosody	different	other wh-in-
	data on duration		while local			intonation	situ languages
	and amplitude		features are more			patterns for	
			important			wh-questions	

Table 1. Summary of the literature regarding their reported prosodic cues for wh-question readings

(1) Stimuli example of Experiment 1: mirror image between subject wh and object wh

a. [wh-region] post-wh region Г Shui LiMing ye mei jian-guo who also not meet-ASP LiMing 'No one met LiMing.' // 'Who did not meet LiMing as well?' [wh-region] b. [pre-wh region mei Shui

LiMing ye mei jian-guo Shui LiMing also not meet-ASP who

'LiMing did not meet anyone.' // 'Who did not LiMing meet as well?'

(2) Stimuli example of Experiment 2: subject wh being sentence boundary or not

a. same as (1a)

