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We present a method for automated detection of prosodic prominence and boundary. 

While attention to prosody continues to increase in speech sciences, the relative paucity of 

and lack of diversity of prosodically annotated corpora remains a challenge (cf. Rosenberg 

2018). 

Our approach takes inspiration from the AuToBI tool (Rosenberg 2010) for 

classification of prosodic events in Mainstream US English (MUSE) using the Tones and 

Breaks Indices (ToBI) standard (Silverman et al. 1992). Rather than committing to the ToBI 

standard and to a specific variety of English, however, we make use of the coarser, more 

theory- and language variety-agnostic Rapid Prosody Transcription (RPT) method (Cole et al. 

2019; see also Ahn et al. 2019). Development of the tool is part of a larger project involving 

collection and annotation of African American English and Latine English conversational 

speech. RPT is a more appropriate standard for uncovering the prosodic inventory of these 

under-documented varieties and requires little training for native speaker annotators. 

A Python-based program takes as input pairs of .wav and .TextGrids segmented at the 

word-and phone-level (using, for example, the Montreal Forced Aligner; McAuliffe et al. 

2017). Textgrids in the training data include word-level intervals annotated for prominence 

and boundary. Acoustic measures–currently pitch and intensity, with plans to integrate 

duration, energy and spectral tilt–are extracted using Praat, via the Parselmouth Python 

library (Jadoul et al. 2018). F0 and intensity measures include maximum, mean, standard 

deviation from the mean, and speaker-normalized standard deviation. These values are fed 

into a Neural Network Binary Classifier model for prediction, and output a prosodic structure 

TextGrid tier. Future iterations will explore Recurrent Neural Networks (RNNs) and Long 

Short-Term Memory (LSTM) models for enhanced sensitivity to syntagmatic context (e.g. 

Lin et al. 2020; Fernandez et al. 2017). 

We test the tool on a prosodically-annotated subset of the Boston University Radio 

News Corpus (Ostendorf et al. 1996), featuring roughly 2 hours of annotated audio data from 

6 speakers and divided into 80%/20% training/test sets. Annotations for pitch accent and 

phrase/boundary tone are collapsed into prominence and boundary, respectively. Results are 

summarized below. Preliminary models, based solely on pitch measures or on intensity 

measures, achieve lower accuracy compared with AuToBI (83% and 93% for prominence 

and boundary), although accuracy is already sufficient to facilitate manual annotation (cf. 

Escudero-Mancebo et al. 2014). Moreover, we anticipate improved performance with the 

inclusion of additional acoustic measures (e.g. duration, energy and spectral tilt) sensitive to 

the nuclei of stressed syllables (already identified in the phone-level transcription) and 

context-sensitive deep learning models (e.g. LSTMs). 

 

 

Model Metric Boundary Prominence 

F0 F1 0.7652 0.6175 

Precision 0.7586 0.6821 

Recall 0.8321 0.6335 

Intensity F1 0.7692 0.6171 

Precision 0.7082 0.6568 

Recall 0.8416 0.6312 
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