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Prevailing sonority models are often based on the Sonority Sequencing Principle (SSP; [1]) 
employing discrete segmental entities and slopes that result from their concatenation in 
symbolic time to determine syllabic well-formedness. While evidently useful, the type of 
discrete computation underlined by such models is incompatible with many cognitive models 
of the mind [2], while also exhibiting gaps in empirical coverage (e.g. /s/-stop clusters [3]). 
We present a new model of sonority that incorporates continuous entities and dynamic 
procedures to account for syllabic well-formedness. The Nucleus Attraction Principle (NAP) 
models a bottom-up route of linguistic inferences, mapping information from acoustics to 
perception and cognition in a functionally-motivated manner. Importantly, NAP requires 
fewer formal assumptions compared to SSP-based models, while at the same time exhibiting 
a better empirical coverage. We present a perception experiment that was designed to test 
NAP against four variants of SSP-based models. We use a Bayesian data analysis approach to 
test and compare the different sonority models [4], where NAP is found to be superior. 

NAP embraces the most basic postulate of sonority-based models, whereby the most 
sonorous element is contained within the nucleus of the syllable. However, instead of adding 
further formal assumptions about sonority slopes in symbolic time, we simply model the link 
between sonority and syllabic nuclei as a dynamic process in real time, whereby all the 
portions of the speech signal compete against each other for the nucleus. Thus, sonority is the 
quality that attracts the nucleus such that the most sonorous portion in a given sequence is 
predicted to win the competition for the nucleus. Syllabic ill-formedness is therefore directly 
related to the degree of nucleus competition that a given syllabified portion incurs. 

We quantify the competition potential of continuous speech portions by obtaining periodic 
energy from the acoustic signal, as a measure of the acoustic intensity of the pitch-bearing 
component of the signal, which we consider to be the most appropriate correlate of sonority 
[5,6]. We calculate the Center of Mass of the area under the periodic energy curve at two 
locations to measure the displacement of energy to the left of the syllable in order to estimate 
the competition potential between the (losing) onset and the (winning) nucleus (Figure 1).  

We recorded 29 complex onset clusters in a /CCal/ word frame, alongside /CəCal/ and 
/əCCal/ fillers (produced in a non-final position of a broad-focus sentence), and we asked 51 
native German speakers to determine if they hear one or two syllables, echoing Berent et al.'s 
experimental paradigm (e.g. [7]). We logged the reaction time (RT) of all "1 syllable" 
responses to single vowel targets as a measure of the processing cost associated with 
syllabifying these stimuli with a single nucleus. Sonority models were tested on their ability 
to predict these RTs given the cluster. We consider 4 SSP-based models, using 2 different 
sonority hierarchies—featuring a collapsed class of obstruents (col) and an expanded class of 
obstruents (exp) that includes distinctions between voiced vs. voiceless, and stops vs. 
fricatives—with 2 types of sonority principles: the SSP and the Minimum Sonority Distance 
(MSD; [8]), which favours steeper rising sonority slopes over shallower rises. 

In the statistical models [9-11], we accounted for the ordinal form of SSP-based model 
predictions vs. the continuous scores in NAP, and we fitted a null model as baseline. All 
sonority models exhibited a clear effect on measured RTs, suggesting that they all capture at 
least some important aspects of sonority (e.g. Figures 2a-b). For model comparison, we used 
k-fold (k=15) cross validation stratified by subjects, where NAP was found to have superior 
predictive accuracy indicating a stronger ability to generalize to unseen stimuli (Table 1).  

To conclude, the NAP model presents methodological, theoretical and empirical 
advantages over prevailing SSP-based models, supporting the incorporation of continuity in 
phonology and validating the choice of periodic energy as the acoustic correlate of sonority. 



Figure 1. Smoothed 
periodic energy curves 
(black) of the 29 
experimental targets. Red 
vertical lines denote the 
center of mass of the entire 
syllable, blue vertical lines 
denote the center of mass of 
the left portion (from the 
beginning up to the red 
line). Distances between 
mass centers (black arrows 
and corresponding 
numbers) denote 
competition potentials, i.e. 
NAP's well-formedness 
scores. Grey dotted vertical 
lines denote manual 
segmentation (for 
exposition purposes only).  
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Figures 2(a-b). Model fit 
examples: Observed mean 
log-transformed response 
times (y-axis) are depicted 
with red points; distribution 
of simulated means based 
on individual models are 
depicted with blue violins. 
Order of stimuli on the x-
axis (from less to more 
well-formed) reflects model 
scores: scalar for NAP (2a) 
and ordinal for SSP (2b). 

 
Model elpd Difference 

in elpd 
Difference 
SE 

Weight 

NAP -28680 0.00 0.00 0.77 
MSDexp -28800 -120.00 18.83 0.1 
SSPexp -28818 -138.78 19.68 ≈ 0 
MSDcol -28833 -153.72 21.75 0.06 
SSPcol -28838 -157.79 21.95 0.07 
Null -28853 -173.71 19.92 ≈ 0 

 

Table 1. Model comparison: 
The table is ordered by the expected 
log-predictive density (elpd) score of 
the models (higher score indicating 
better predictive accuracy).  
SE = Standard Error. Weights 
represent the combined weights of the 
individual models that maximize the 
total elpd score. 
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